

Analyzing Emotional Facial Expressions' Neural Correlates Using **Event-RelatedPotentials and Eye Fixation-Related Potentials**

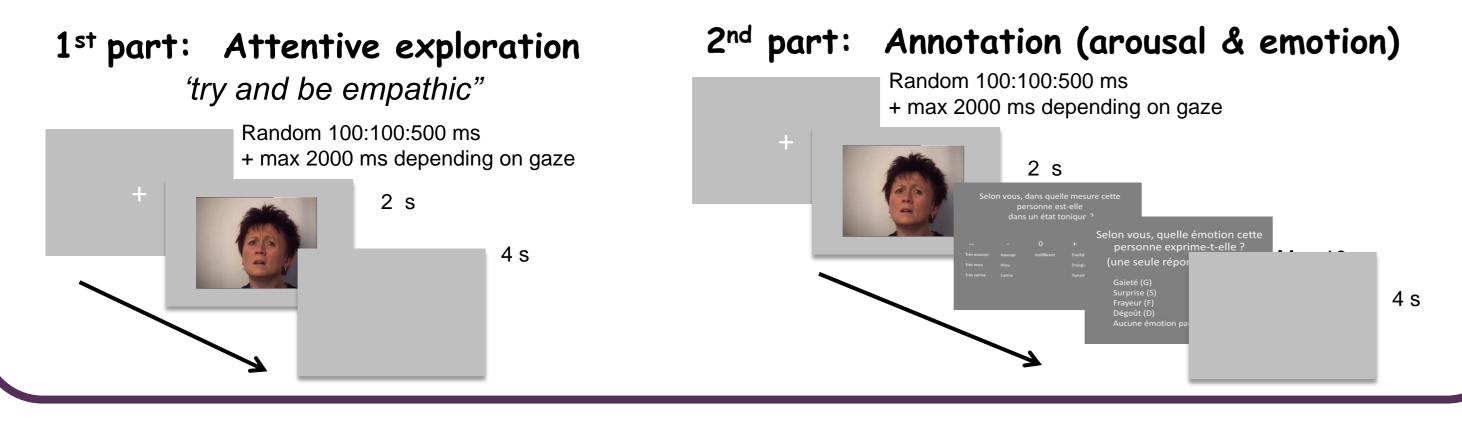
Emmanuelle Kristensen ¹, Raphaëlle Roy ², Bertrand Rivet ¹, Anne Tcherkassof ³ & Anne Guérin-Dugué ¹ emmanuelle.kristensen@gipsa-lab.grenoble-inp.fr; raphaelle.roy@isae-supaero.fr, bertrand.rivet@gipsa-lab.grenoble-inp.fr, anna.tcherkassof@univ-grenoble-alpes.fr, anne.guerin@gipsa-lab.grenoble-inp.fr

¹ Univ. Grenoble Alpes, GIPSA-lab, CNRS, Grenoble, France, ² ISAE-SUPAERO, Toulouse, France, ³ Univ. Grenoble Alpes, LIP-PC2S, Grenoble, France

Objectives

- Study the **Emotional Facial Expressions** (EFE) processing: experimental data based on EEG activities synchronized with ocular fixations;
- Observations: Event-Related Potential (ERP) at the stimulus onset and first Eye Fixation-**Related Potential** (EFRP);
- Methodology: Estimation using the **General Linear Model** (GLM) because of responses overlap (Kristensen, et al., 2017) between the ERP at the stimulus onset ant the first EFRP;
- Components linked to emotional processing: N170, EPN (Early Posterior Negativity), LPP (Late Positive Potential), (Schupp, et al. 2003; Recio, et al., 2011);
- Focus on LPP: elaborative processing and conscious recognition (Schupp et al., 2003).

Experiment


22 participants between 20 and 40 years old

Assumptions

- The LPP latency includes the first fixation onset;
- The LPP amplitude estimated by average on the signal time-locked at the stimulus onset is also function of the response at the first fixation that begins **the visual exploration** of the Emotional Facial Expression;
- **By GLM**: to be able to split what is due to the perception of the stimulus presentation without eye movement and what is due to the perception of the first gazed region;

Behavioral results

- **DynEmo database:** actual people (not actors) expressing their emotions → ecological material (Tcherkassof et al., 2013)
- Static stimuli: Apex of the emotional dynamic response, evaluated by 20 judges.
- Four conditions: Disgust (12 stimuli), Surprise (12), Happiness (12), Neutral (24)

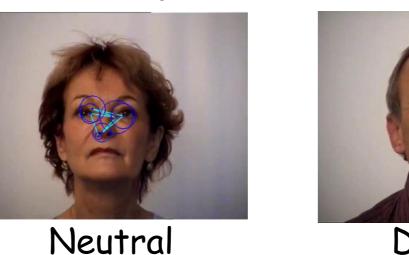
Co-registration: EEG and Eye-movements

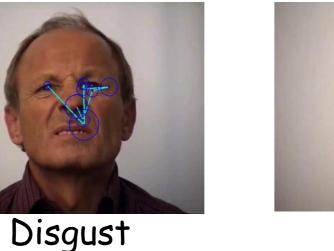
Data acquisition

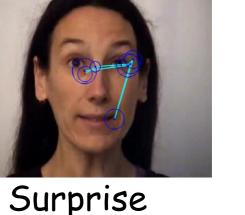
EEG

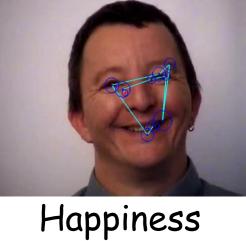
- BrainCap 64 active electrodes Reference FCz - Ground AFz
- Sampling frequency: 1000 Hz

Eye-Tracker


- Eyelink 1000 (SR Research)
- Sampling frequency: 1000 Hz

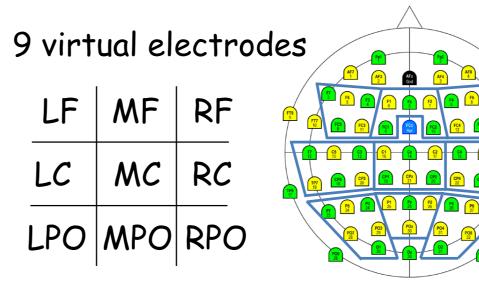

Data pre-processing

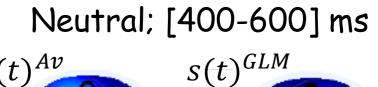

Synchronization

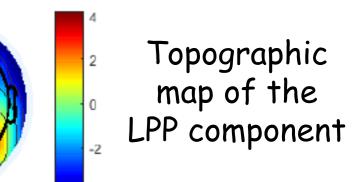

• Time-alignment with common hardware triggers <u>Artifacts rejection</u> \rightarrow Semi-automated procedure

EEG analysis on the first part using the labels of the recognized emotions from the second part

<u>Recognition rate</u>, Fixations duration and first fixation latency \rightarrow mean (sd)


	Neutral	Disgust	Surprise	Happiness
Recog. rate [%]	67.07 (18.74)	66.52 (17.66)	56.39 (16.64)	96.28 (5.26)
Fix. duration [ms]	309.00 (66.38)	309.77 (65.08)	310.86 (66.30)	297.67 (65.87)
1st fix. latency [ms]	275.03 (49.16) → before LPP latency [400-600] ms			


N170, EPN, LPP on $s(t)^{AV}$ and on $s(t)^{GLM}$


Two estimates

Examples of scanpaths

- $s(t)^{Av} = \overline{x(t)}$: Estimation by Average of the potential evoked at the stimulus onset, including activities at the first fixation onset
- $s(t)^{GLM} = s(t)$: Estimation by GLM of the potential evoked at the stimulus

<u>Statistical test from all emotions</u> \rightarrow ANOVA (2 estimates x 9 virtual electrodes)

- Frequency filtering: 1-70 Hz + 50 Hz notch filter
- Channels: Visual inspection & interpolation
- Ocular artifacts: SOBI algorithm, cancelation of sources most correlated to EOG
- Epochs: rejection (0.8% in average) based on a variance criterion (if > mean + 3 sd)

Statistical tests

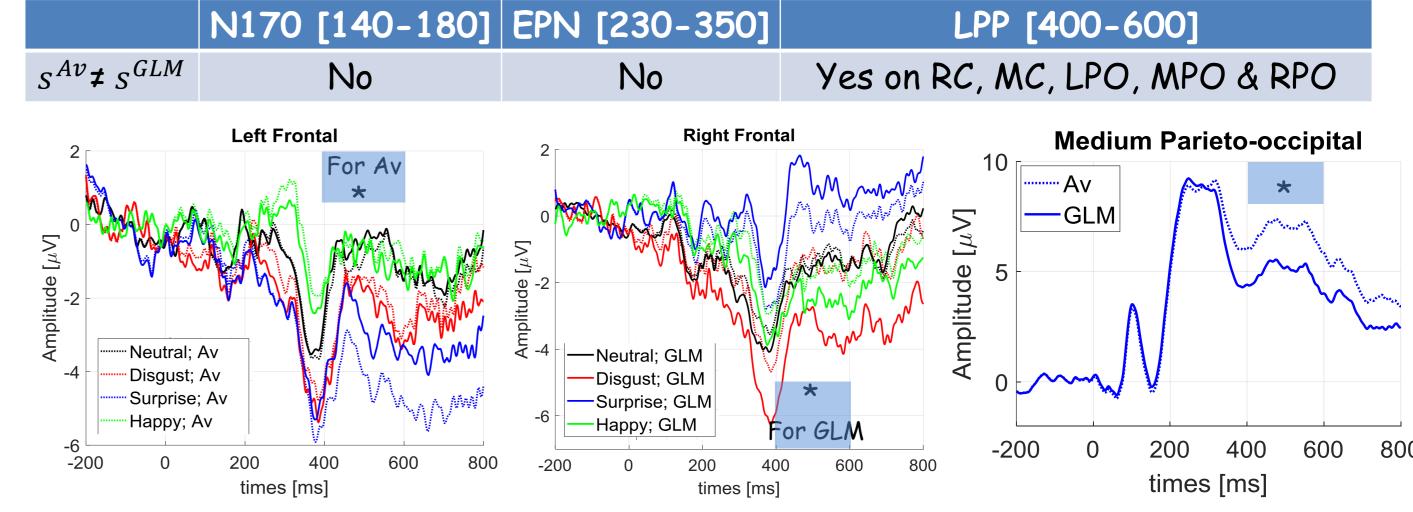
Repeated-measure ANOVA & Tukey post-hoc tests

ERP and EFRP estimations by GLM

Estimation with GLM : ERP at the stimulus onset

- Overlap: ERP at the stimulus onset (s(t)) and EFRP at the first fixation onset $(a_1(t))$
- Model for the *i*th trial:

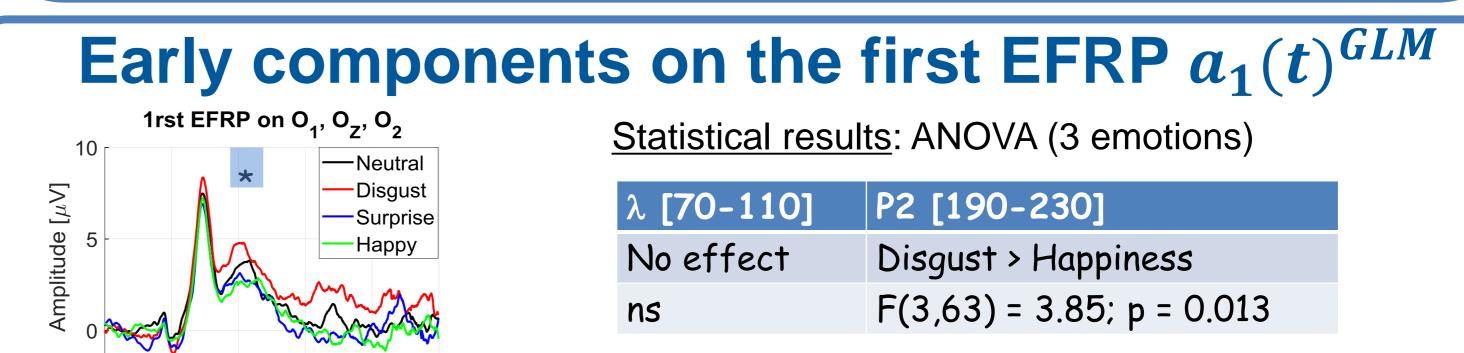
 $\begin{aligned} x_i(t) &= s(t) + a_1(t - \tau_i^{(1)}) + \sum_{f=2} a_{2_+} \left(t - \tau_i^{(f)} \right) + n(t) \\ x &= D_s \cdot s + D_1 \cdot a_1 + D_{2_+} \cdot a_{2_+} + n \end{aligned}$

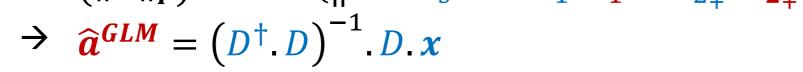

Matrix formulation:

Input data (*N* trials)

- $\{x_i(t), i = 1..N\}$: observed time locked signals at the stimulus onset
- $\{\tau_i^{(1)}, i = 1...N\}$: latencies of the first fixation
- $\{\tau_i^{(f)}, f > 2, i = 1...N\}$: latencies of the following fixations

Signals to estimate

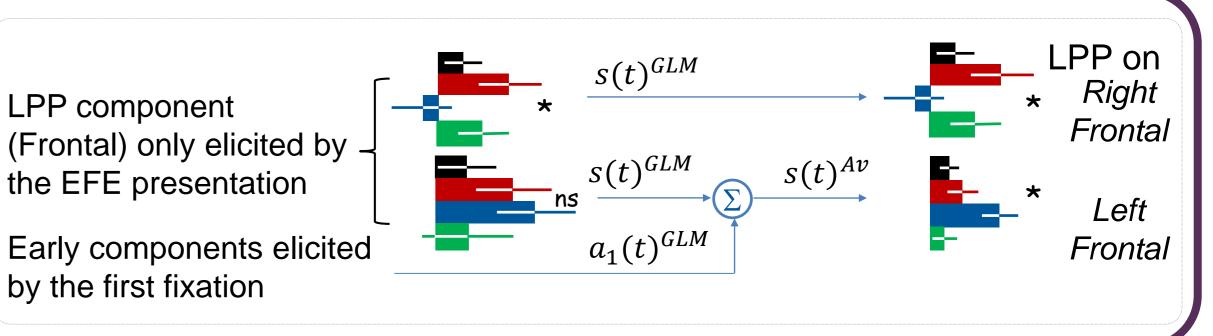

- s(t): potential evoked at the stimulus onset (ERP)
- $a_1(t)$: potential evoked at the stimulus onset (First EFRP)
- $a_{2_{+}}(t)$: potential evoked at the stimulus onset (following EFRP) –
- \hat{a}^{GLM} such as $min(||n||_F^2) = min(||x D_s, s + D_1, a_1 + D_{2_+}, a_{2_+}||_F^2)$ Solution


<u>Statistical tests per estimate</u> \rightarrow 2 ANOVA (4 emotions x 9 virtual electrodes)

	s^{Av}	S ^{GLM}
LPP [400-600]	Surprise < (Neutral = Disgust = Happiness) on Left frontal	Surprise > Disgust on Right Frontal
EMO × VE	F(24, 504) = 3.89; p < 0.001	F(24, 504) = 1, 93; p = 0.005

• Differences on emotions in Left Frontal site with $s(t)^{Av}$ and in Right Frontal site with $s(t)^{GLM}$

GRENØBL



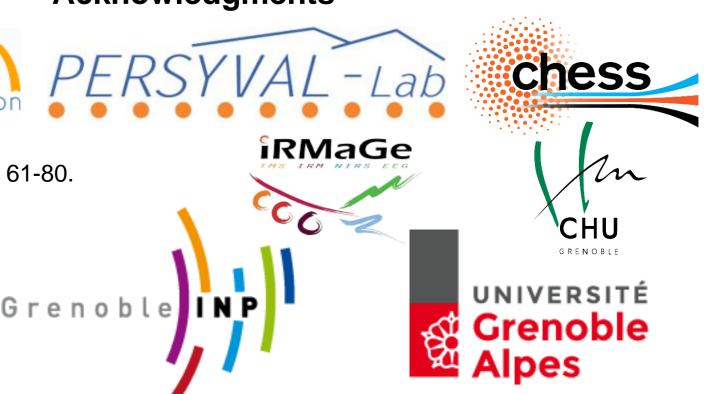
• On occipital sites, the P2 component elicited at the first fixation is larger for Disgust than for Happiness

Conclusions

- It is the first attempt to distinguish in the LPP response what comes from to the stimulus presentation alone $(s(t)^{GLM})$. In contrast, the usual estimation $(s(t)^{A\nu})$ includes the very beginning of the EFE exploration (first fixation).
- Cognitive processing from the first fixation onset strengthens an activities pattern at left frontal site -more involved for positive EFE (Ahern, Schwartz, 1979)- becoming significant across EFE. But, at right frontal site -more involved for negative EFE-, another activities pattern, only elicited by the stimuli presentation, is at once significant across EFE.
- These findings are in line with faster and facilitated perceptual processing for negative EFE (Schupp, et al., 2004).

References

- Ahern, G. L., & Scharwtz, G. E. (1979). Differential lateralization for positive versus negative emotion. Neuropsychologia, 17:693-698.
- Recio, G., Sommer, W., & Schacht, A. (2011). Electrophysiological correlates of perceiving and evaluating static and dynamic facial emotional expressions. Brain Research, 1376:66-75.
- Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2003). Attention and emotion: an erp analysis of facilitated emotional stimulus processing. Neuroreport, 14(8):1107-1110.
- Schupp, H. T., Öhman, A., Junghöfer, M., Weike, A. I., Stockburger, J., & Hamm, A. O. The facilitated processing of threatening faces: an ERP analysis. Emotion, 4(2):189-200.
- Tcherkassof, A., Dupré, D., Meillon, B., Mandran, N., Dubois, M. & Adam, J.-M. (2013). DynEmo: A video database of natural facial expressions of emotions. The International Journal of Multimedia & Its Applications, 5 (5), 61-80.


 $D = \begin{bmatrix} D_s, D_1, D_{2_+} \end{bmatrix}^{\dagger}$

their respective latencies

 $\widehat{\boldsymbol{a}}^{\boldsymbol{GLM}} = \left[s^{\dagger}, a_{1}^{\dagger}, a_{2}^{\dagger}\right]^{\dagger}$

Toeplitz matrices with

Acknowledgments